

N. Q. Ninh, D. V. Nam, H. H. Viet / An approximate search algorithm for the student-internship…

 22

AN APPROXIMATE SEARCH ALGORITHM

FOR THE STUDENT-INTERNSHIP ALLOCATION PROBLEM

Nguyen Quang Ninh (1), Dinh Van Nam (2), Hoang Huu Viet (1)

1 School of Engineering and Technology, Vinh University, Vietnam
2 Faculty of Pedagogy, Ha Tinh University, Vietnam

Received on 07/9/2022, accepted for publication on 21/10/2022
DOI: https://doi.org/10.56824/vujs.2022nt22

Abstract: This paper proposes an approximate search algorithm to solve the

student-internship allocation problem. The key idea of the algorithm is that in each
iteration, each student unassigned to an enterprise will be assigned to an enterprise where
the student ranks it highest, and it remains at maximum capacity. If the enterprise
assigned to the student overcomes its capacity, then the enterprise will remove a student
to whom it ranks the worst student to allow it not to overcome its capacity. Experimental
results with randomly generated datasets show that our algorithm is efficient for the
problem of large sizes.

Keywords: Blocking pair; stable matching; internship allocation; approximation
algorithm.

1. Introduction

In the trend of university training associated with enterprises, the assignment of
students to internship enterprises is a frequent problem to be solved in universities. This
problem is normally solved in one of the following ways: (i) training departments directly
assign students to internship enterprises; or (ii) the student applies for a certificate of
acceptance letter of the internship from a certain enterprise and the training department
considers accepting internships for students. However, each enterprise is often limited in
the number of students admitted to the internship. In case there are too many students
applying for an internship at a certain enterprise at the same time, the above solution is not
effective. The reason is that it is very difficult to satisfy both the requirement of choosing
an intern enterprise and the requirement of choosing an intern of the enterprise.

The assignment of students to internship enterprises to is a one-to-many problem
and is similar to the problem “The Hospitals/Residents Problem”, abbreviated as the HR
problem [1], [2], where students refer as “residents” and enterprises refer as “hospitals”.
To be consistent with the symbols in the HR problem, the symbols for “residents” and
“hospitals” will be used to represent the symbols for students and enterprises. The HR
problem is described as consisting of a set R = {r1, r2, . . ., rn} of students, a set H = {h1,
h2, . . ., hm} of enterprises, in which (i) each student ri ∈ R ranks a subset of H in a strict

priority order (i.e. no equal priority exists); (ii) each enterprise hj ∈ H ranks a subset of R

in a strict priority order; and (iii) each enterprise hj ∈ H has an integer cj ∈ Z+ to indicate
the maximum number of students that hj can accept interns. The requirement of the HR
problem is to find a stable match M of students and enterprises such that M has no blocking
pair, in which a pair (ri, hj) ∈ R × H is said to be a block pair for matching M if: (i) ri ranks
hj and vice versa; (ii) ri is not matched to any enterprise or ranks hj higher than the
enterprise matched to ri; and (iii) hj is not enough students to be matched or hj ranks ri
higher than the lowest ranked enterprise that is matched for hj in matching M.

Email: viethh@vinhuni.edu.vn (H. H. Viet)

mailto:viethh@vinhuni.edu.vn

Vinh University Journal of Science, Vol. 51, No. 3A/2022, pp. 22-33

 23

The HR problem requires students to rank enterprises in a strict priority order, so

it is difficult to apply to real-world problems. Therefore, some extensions of the HR

problem have been proposed [2]-[7], in which the HR problem does not require

students/enterprises to provide a strict priority ranking list (Hospitals/Residents problem

with Ties) referred to as HRT [3], [5], [7] received the most attention. With the permission

of students and enterprises to expand lists of rankings with equal priority, the definitions

of stability matching include weak stability, strong stability, and super-stability [3]. Given

an instance I of the HRT problem, Irving et al. have shown that the instance I can exist

many weakly stable matchings with different sizes [4]. Therefore, in order to have the

maximum number of students assigned to the internship enterprises, it is necessary to

ensure that the matching is not only stable, but also that the largest number of students are

assigned to the enterprises. This is the problem of finding the weakly stable matching with

the largest size, called the MAX-HRT problem, and has been shown by Iwama et al. to be

an NP-hard problem even if: (i) each enterprise hj H has cj = 1; and (ii) the same priority

ranking appears only in the lists of students or in the lists of enterprises [9].
In this paper, we propose an approximation search algorithm to solve the MAX-

HRT problem. Experimental results on randomly generated datasets show that the

proposed algorithm effectively solves the large MAX-HRT problem in terms of both

execution time and solution quality. Hereafter, the MAX-HRT problem will be called the

HRT problem. The rest of the paper is organized as follows: Section 2 presents the HRT

problem and some related works; Section 3 describes the proposed algorithm for the HRT

problem; Section 4 presents the experimental results on randomly generated datasets and

Section 5 gives the conclusions of the paper.

2. HRT problem and related works

2.1. HRT problem

In this section, the HRT problem will be presented [3], [5] and an example will be

given to illustrate the concepts involved in the problem. An instance I of the HRT problem

consists of a set R = {r1, r2, . . ., rn} of students and a set H = {h1, h2, . . ., hm} of enterprises,

where: (i) each student ri ∈ R ranks a subset of H in a non-descending order in her/his ranking

list; (ii) each enterprise hj ∈ H ranks a subset of R in a non-descending order in its ranking

list; (iii) each enterprise hj ∈ H offers a maximum number of students cj ∈ Z+ that can

accept internships. The notation A = {(ri, hj) ∈ R H} is a set of acceptable pairs, where ri

ranks hj in ri 's prioritized list and vice versa. The notation rank(ri, hj) is the rank order of

hj in the priority sorted list of ri and rank(hj, ri) is the rank order of ri in the priority sorted

list of hj. If a student ri prioritizes enterprise hj higher than an enterprise hk, then we denote

rank(ri, hj) < rank(ri, hk). If a student ri prioritizes two enterprises hj and hk equally, we

denote rank(ri, hj) = rank(ri, hk). The same rating symbols are also used for enterprises.

 Definition 1 (Matching): A matching M is a set of pairs (ri,hj) A, where each

student ri ∈ R can match at most one enterprise hj ∈ H and each enterprise hj can match at

most cj students.

If a pair (ri, hj) ∈ M, we denote M(ri) = hj, M(hj) = {ri | (ri, hj) ∈ M} and |M(hj)| is

the number of students assigned to the enterprise hj. If a student ri is not matched for any

N. Q. Ninh, D. V. Nam, H. H. Viet / An approximate search algorithm for the student-internship…

 24

enterprises, we denote M(ri) = . An enterprise hj ∈ H is said to be under-subscribed, full,

or over-subscribed for the number of students if |M(hj)| < cj, |M(hj)| = cj, or |M(hj)| > cj,

respectively.

Definition 2 (Blocking pair): A pair (ri, hj) ∈ R H is said to be a blocking pair for

a matching M if the following conditions are satisfied: (i) (ri, hj) ∈ A; (ii) M(ri) = or

rank(ri, hj) < rank(ri, M(ri)); (iii) |M(hj)| < cj or rank(hj, ri) < rank(hj, rw) in which rw is the

student for whom hj ranks lowest in M(hj).

Definition 3 (Stable matching): A matching M of an instance I is said to be a stable

matching if there are no blocking pairs for M, otherwise M is called unstable matching.

We denote |M| by the number of students assigned in the stable matching M. A stable

matching M is said to be a perfect matching if |M| = n, that is, every student ri R is matched

to the enterprises, otherwise M is said to be non-perfect.

An illustrative example of an instance I of the HRT problem with 8 students and 4

enterprises is described in Table 1, in which the order of equal priority is placed in pairs

of “()”. For example, the notation r5: (h1, h2) h3 means that r5 ranks h1 and h2 equally, but

ranks h1 and h2 higher than h3, i.e. rank(r5, h1) = rank(r5, h2) = 1 and rank(r5, h3) = 2. The

matching M = {(r1, h1), (r2, h1), (r3, h2), (r4, h3), (r6, h4), (r7, h2)} is an unstable matching

because there exist several blocking pairs for M including (r3, h1), (r5, h1), (r5, h2), (r5, h3),

and (r8, h2). The matching M = {(r1, h3), (r2, h4), (r3, h1), (r4, h3), (r5, h2), (r6, h4), (r7, h1),

(r8, h2)} is a stable matching since there are no blocking pairs for M and moreover, M is a

perfect matching because |M| = 8.

Table 1: An example of an instance I of the HRT problem

List in order of priority of students List in order of priority of enterprises

r1: h1 h3

r2: (h1 h4)

r3: h1 h2

r4: (h2 h3 h4)

r5: (h1 h2) h3

r6: h4 h2 h3

r7: h1 h2

r8: (h1 h2)

h1: r3 (r2 r5) (r1 r7 r8)

h2: r3 r8 (r5 r6) r7 r4

h3: (r1 r4 r6) r5

h4: r2 r6 r4

Capacities of enterprises:

c1 = 2, c2 = 2, c3 = 2, và c4 = 2.

2.2. Some related works

In recent years, most of the proposed algorithms to solve the HRT problem are

approximation algorithms because HRT is an NP-hard problem. An algorithm is said to be

r-approximate if it always finds a stable match M with |M| ≥ |Mopt|/r for all instances of the

HRT problem, where Mopt is a stable matching of the largest size. Manlove et al. [9]

proposed a 2-approximation algorithm to find a weakly stable matching with the largest

size for the HRT problem. Irving and Manlove [5] have proposed two heuristic search

algorithms for the HRT problem, in which the equal priority ranking appears only in the

priority list of enterprises. Király [11] proposed two 3/2-approximation algorithms with

linear time, in which an algorithm is applied to the HRT problem when equal priority

appears only in the ranked list of enterprises and an algorithm is applied to the general

Vinh University Journal of Science, Vol. 51, No. 3A/2022, pp. 22-33

 25

HRT problem. Kwanashie et al. have proposed an integer programming model,

abbreviated as IP, to solve the HRT problem [12]. The basic idea of the IP algorithm for

the HRT problem includes: (i) remove the acceptable pairs in the priority lists of students

and enterprises that do not belong to the stable matchings; and (ii) use the CPLEX IP tool

to solve the HRT problem. Munera et al. have proposed an adaptive search algorithm,

abbreviated as AS, to solve the HRT problem [7]. The basic idea of the AS algorithm is to

convert the HRT problem to the SMTI problem and apply the adaptive search algorithm

to the SMTI problem to solve the HRT problem [13].

Algorithm 1: HS algorithm for the HRT problem

1. function HS(I)

2. M := ;

3. a(ri) := 1, ri ∈ R;

4. h(hj, ri) := 0, (ri, hj) ∈ A;

5. while (ri ∈ R | a(ri) = 1) do

6. if (rank(ri, hj) = 0, hj ∈ H) then

7. a(ri) := 0;

8. continue;

9. end

10. Hj := argmin(rank(ri, hj)), hj ∈ H and rank(ri, hj) > 0;

11. hj := argmax(cj - |M(hj)|), hj ∈ Hj;

12. M : = M {(ri, hj)};

13. a(ri) := 0;

14. f(j) := frequency of j = 1, 2, . . ., m in rank(ri, hj), hj ∈ H;

15. h(hj, ri) := rank(hj, ri) + (m max(f(j)) + sum(f(j))) / (m2 + 1), j = 1, ..., m;

16. if (|M(hj)| > cj) then

17. rw := argmax(h(hj, ri)), ri ∈ M(hj);

18. M := M \ {(rw, hj)};

19. rank(rw, hj) := 0;

20. a(rw) := 1;

21. h(hj, rw) := 0;

22. end

23. end

24. return M;

3. Proposed algorithm

In this section, an approximation algorithm in the form of heuristic search,

abbreviated as HS, is proposed to solve the problem of assigning students to internship

enterprises.

N. Q. Ninh, D. V. Nam, H. H. Viet / An approximate search algorithm for the student-internship…

 26

3.1. Algorithm

The HS algorithm to solve the HRT problem is proposed as in Algorithm 1. During

the execution of the algorithm, each student ri ∈ R is set to one of two states, either paired

with a certain enterprise in a stable matching M (i.e., a(ri) = 1) or unpaired with any

enterprise (i.e., a(ri) = 0).

First, the algorithm establishes all students in the unpaired state in the matching

M. In addition, the value of the heuristic function is also set h(hj, ri) = 0 for every pair

(ri, hj) ∈ A. At each iteration, the algorithm runs the following: The algorithm first finds

a student ri ∈ R that has not been matched with any enterprises. If ri has selected all

enterprises hj in ri's ranking list, then ri changes to unpaired state, i.e., student ri will not

be matched with any enterprises and the algorithm continues for other students (lines 6-

9). On the contrary, the algorithm finds a set of enterprises Hj that ri ranks the highest

priority and then chooses an enterprise hj ∈ Hj that has the most internships (lines 10-

11). Next, the algorithm assigns student ri to enterprise hj in the matching M and sets the

state ri to be matched. When student ri is paired with enterprise hj, the algorithm updates

the value of the heuristic function h(hj, ri) for the pair (hj, ri) to eliminate a “worst”

student in the set M(hj) of students who have been matched with enterprise hj (line 14-

15). If the enterprise hj exceeds the maximum number of students cj to accept the

internship, the algorithm finds and removes a worst student rw in the set M(hj)

corresponding to the maximum value h(hj, rw), hj will be removed from rw’s priority

ranking list. At the same time, the algorithm will set the state of student rw as unpaired

and the assigned heuristic function value h(hj, rw) = 0 (lines 16-22).

The algorithm iterates until every student has a matched state, i.e., has been

matched at least once with a certain enterprise hj ∈ H and returns a stable matching M.

Note that a student rw corresponding to the maximum of the function h(hj, rw) (line 15)

means that rank(hj, ri) is the largest and m max(f(j)) + sum(f(j)) / (m2 + 1) is the largest.

Furthermore, we have rank(hj, ri) ≥ 1 and 0 < (m max(f(j)) + sum(f(j))) / (m2 + 1) < 1, so

that eliminating a student rw corresponding to the maximum of the function h(hj, rw) will

ensure that the algorithm does not form blocking pairs for M and student rw will have at

most the chances of being matched with the most remaining enterprises because rw not

only ranks in priority with the most enterprises (i.e. m max(f(j))) but also ranks the most

enterprises (i.e. sum(f(j))).

3.2. Example

Consider an example of an instance I of the HRT problem given in Table 1 with

the ranking lists of students and enterprises described in Table 2. The iteration steps of the

algorithm to find a perfect matching are shown in Table 3.

From iteration steps 1 to 6, students r1, r2, . . ., r6 selects and is paired with the

highest priority enterprises, i.e., M = {(r1, h1), (r2, h4), (r3, h1), (r4, h2), (r5, h2), (r6, h4)}. At

iteration step 7, r7 chooses h1, we have h(h1, r7) = 3.4 and M = {(r1, h1), (r2, h4), (r3, h1),

(r4, h2), (r5, h2), (r6, h4), (r7, h1)}. However, because h1 exceeds the number of students c1

= 2, the algorithm will eliminate one of the three pairs (r1, h1), (r3, h1) and (r7, h1). Since

Vinh University Journal of Science, Vol. 51, No. 3A/2022, pp. 22-33

 27

h(h1, r1) has the largest value, the pair (r1, h1) is excluded from M, that is, M = {(r2, h4),

(r3, h1), (r4, h2), (r5, h2), (r6, h4), (r7, h1)} and h(r1, r1) = 0. At iteration step 8, r1 chooses

h3, we have h(h3, r1) = 1.6 and M = {(r1, h3), (r2, h4), (r3, h1), (r4, h2), (r5, h2), (r6, h4), (r7,

h1)}. At iteration step 9, r8 chooses h1, we have h(h1, r8) = 4.2 and M = {(r1, h3), (r2, h4),

(r3, h1), (r4, h2), (r5, h2), (r6, h4), (r7, h1), (r8, h1)}. However, because h1 exceeds the number

of students c1 = 2, the algorithm will eliminate one of the three pairs (r3, h1), (r7, h1), (r8,

h1). Since h(h1, r8) has the largest value, the pair (r8, h1) will be removed from M and we

have the matching M = {(r1, h3), (r2, h4), (r3, h1), (r4, h2), (r5, h2), (r6, h4), (r7, h1)}. At

iteration step 10, r8 chooses h2, we have h(h2, r8) = 2.6 and M = {(r1, h3), (r2, h4), (r3, h1),

(r4, h2), (r5, h2), (r6, h4), (r7, h1), (r8, h2)}. Since h(h2, r4) has the largest value of 3 pairs (r4,

h2), (r5, h2), (r8, h2), it will be eliminated to obtain the matching M = {(r1, h3), (r2, h4), (r3,

h1), (r5, h2), (r6, h4), (r7, h1), (r8, h2)}. At iteration step 11, r4 chooses h3 and just enough

students are matched c3 = 3, the algorithm returns a perfect matching M = {(r1, h3), (r2, h4),

(r3, h1), (r4, h3), (r5, h2), (r6, h4), (r7, h1), (r8, h2)}.

Table 2: Rank list of instance I of students and enterprises

List in order of priority of students List in order of priority of enterprises

 h1 h2 h3 h4 r1 r2 r3 r4 r5 r6 r7 r8

r1: 1 0 2 0 h1: 3 2 1 0 2 0 3 3

r2: 1 0 0 1 h2: 0 0 1 5 3 3 4 2

r3: 1 2 0 0 h3: 1 0 0 1 2 1 0 0

r4: 0 1 1 1 h4: 0 1 0 3 0 2 0 0

r5: 1 1 2 0

Maximum number of students of enterprises:

c1 = 2, c2 = 2, c3 = 2, và c4 = 2.
r6: 0 2 3 1

r7: 1 2 0 0

r8: 1 1 0 0

Table 3: The iteration steps of the HS algorithm for the example in Table 1

Step ri hj h(hj, ri) M

1 r1 h1 3.4 {(r1, h1)}

2 r2 h4 2.2 {(r1, h1), (r2, h4)}

3 r3 h1 1.4 {(r1, h1), (r2, h4), (r3, h1)}

4 r4 h2 6.8 {(r1, h1), (r2, h4), (r3, h1), (r4, h2)}

5 r5 h2 4.0 {(r1, h1), (r2, h4), (r3, h1), (r4, h2), (r5, h2)}

6 r6 h4 2.2 {(r1, h1), (r2, h4), (r3, h1), (r4, h2), (r5, h2), (r6, h4)}

7 r7 h1 3.4 {(r2, h4), (r3, h1), (r4, h2), (r5, h2), (r6, h4), (r7, h1)}

8 r1 h3 1.6 {(r1, h3), (r2, h4), (r3, h1), (r4, h2), (r5, h2), (r6, h4), (r7, h1)}

9 r8 h1 4.2 {(r1, h3), (r2, h4), (r3, h1), (r4, h2), (r5, h2), (r6, h4), (r7, h1)}

10 r8 h2 2.6 {(r1, h3), (r2, h4), (r3, h1), (r5, h2), (r6, h4), (r7, h1), (r8, h2)}

11 r4 h3 2.2 {(r1, h3), (r2, h4), (r3, h1), (r4, h3), (r5, h2), (r6, h4), (r7, h1), (r8, h2)}

N. Q. Ninh, D. V. Nam, H. H. Viet / An approximate search algorithm for the student-internship…

 28

4. Some experimental results

In this section, we describe the experiments to evaluate the efficiency of the

proposed algorithm. The quantity and execution time to find perfect matchings are

compared between the proposed algorithm and the AS algorithm [7]. All experiments were

performed by Matlab software version 2019a running on a Core i7-8550U personal

computer with 1.8GHz processor and 16Gb memory.

We extend the procedure for creating the problem SMTI [14] (a special case of the

HRT problem with n = m and cj = 1, hj ∈ H) to generate instances of HRT with the

parameter set (n, m, {c1, c2, . . ., cm}, p1, p2), where n is the number of students, m is the

number of enterprises, cj (j = 1, 2, . . ., m) is the maximum number of students that an

enterprise hj ∈ H can accept an internship, p1 is the probability of the appearance of

enterprises and students in the ranked list of ri ∈ R and hj ∈ H, p2 is the probability that ri

∈ R and hj ∈ H rank equally among enterprises and students. This means that each student

ranks about m (1 - p1) enterprises and each enterprise ranks about n (1 - p1) students in

each instance created.

In addition, since the stable matchings contain only acceptable pairs (ri, hj) ∈ A, we

therefore create instances where the ranking lists of students and enterprises consist of only

acceptable pairs. Table 2 illustrates a randomly generated instance I according to the

priority ranking list of the HRT problem with parameters (8, 4, {2, 2, 2, 2}, 0.5, 0.5).

Experiment 1: In this experiment, we choose n = 200, m = 20, p1 ∈ {0.1, 0.2, . . .,

0.8} and p2 ∈ {0.0, 0.1, . . ., 1.0}. This means that when p1 increases from 0.1 to 0.8, each

student ranks from 18 enterprises down to 4 enterprises, and each enterprise ranks from

180 students down to 40 students. For each combination of the values of the parameters

(n, m, p1, p2), we randomly generate 100 instances where cj = n/m for all hj ∈ H (j = 1, 2, .

. ., m). With this setting we have ∑ 𝑐𝑗 = 𝑛𝑚
𝑗=1 , i.e., each student will have the possibility of

getting an internship from an enterprise. Obviously if ∑ 𝑐𝑗 < 𝑛𝑚
𝑗=1 , at least one student will

not get the internship, that is, we cannot find a perfect matching. In addition, we set the

maximum number of iterations in the AS algorithm to be 5000.

Figure 1(a) shows the percentage of perfect matchings found by the HS and AS

algorithms. Note that when p1 increases from 0.1 to 0.5, both the HS and AS algorithms

find 100% of perfect matchings, so we do not show the experimental results on this figure.

The experimental results show that when p1 increases from 0.6 to 0.8, the percentage of

perfect matchings found by HS and AS both decrease because as the number of enterprises

prioritized by students and the number of students ranked by enterprises decreases, which

leads to a decrease in the number of acceptable pairs and thus it is difficult for HS and AS

algorithms to find perfect matchings.

When p2 = 0, that is, the priority ranking list of enterprises and students has no

equal priority, the HS and AS algorithms both find the same number of perfect matchings

because all stable matchings have the same size. As p2 increases from 0.1 to 1.0, HS finds

more perfect matchings than AS.

Vinh University Journal of Science, Vol. 51, No. 3A/2022, pp. 22-33

 29

(a) Percentage of perfect matchings

b) Execution time

for finding perfect matchings

Figure 1: The result of Experiment 1

Figure 1(b) shows the average execution time to find the perfect matchings of the

HS and AS algorithms. When p1 increases from 0.6 to 0.8, the execution time to find the

perfect matchings of HS and AS does not change significantly. When p2 increases from

0.0 to 0.9, the execution time to find perfect matchings of HS and AS is almost unchanged.
When p2 = 1.0, the execution time of HS to find perfect matchings is approximately the

same as that of perfect matchings when p2 = 0.9, while the execution time of AS to find

perfect matchings is slightly reduced. In addition, the execution time of HS to find perfect

matchings increased from 10-2.5 seconds to 10-2.1 seconds, while the execution time of AS

to find perfect matchings increased from 10-1.4 seconds to 100.9 seconds, that is, HS finds

perfect matchings 12 to 1000 times faster than AS.

Experiment 2: In this experiment, we choose the values of the parameters n, m, p1

and p2 as in Experiment 1. For each combination of the values of the parameters (n, m, p1,

p2), 100 instances of the HRT problem were randomly generated, where the maximum

number of students cj for each enterprise hj ∈ H (j = 1, 2, . . ., m) is chosen as a random

integer in the interval [0.1q, 0.4q], in which q is the total number of students ranked by the

enterprise hj ∈ H. This can be understood that each enterprise hj ∈ H ranks q students but

only selects from 10% to 40% of interns.

Figure 2 shows the percentage of perfect matchings and the average execution time

to find the perfect matchings of the HS and AS algorithms. Figure 2(a) shows that when

p1 = 0.6 or p1 = 0.7, both HS and AS find a higher number of perfect matchings than in the

case of cj = n/m as in Experiment 1. In addition, the HS algorithm finds a much higher

percentage of perfect matchings than the AS algorithm. Figure 2(b) shows that the HS

algorithm has a much smaller average time to find perfect matchings than the AS

algorithm, i.e. HS runs much faster than the AS algorithm.

Experiment 3: In this experiment, the number of students and the number of

enterprises is changed to consider the performance of HS and AS algorithms. We choose

n = 300, m ∈ {15, 20, 25}, p1 = 0.7 and p2 ∈ {0.0, 0.1, . . ., 1.0}, that is, each student ranks

about 5 to 8 enterprises and each enterprise ranks about 90 students. For each combination

P
er

ce
n

ta
g

e
o

f
p

er
fe

ct
 m

at
ch

in
g

s

A
v

er
ag

e
ex

ec
u

ti
o
n

 t
im

e
(l

o
g

1
0
 (

s)
)

N. Q. Ninh, D. V. Nam, H. H. Viet / An approximate search algorithm for the student-internship…

 30

of values of the parameters (n, m, p1, p2), 100 instances of the HRT problem were randomly

generated, in which the maximum number of students of enterprises hj ∈ H (j = 1, 2, . . .,

m) is cj = n/m.

a) Percentage of perfect matchings

b) Execution time

for finding perfect matchings

Figure 2: The result of Experiment 2

a) Percentage of perfect matchings

b) Execution time

for finding perfect matchings

Figure 3: The result of Experiment 3

Figure 3(a) shows the percentage of perfect matchings found by the HS and AS

algorithms. As m increases from 15 to 25, it is easier for both HS and AS to find perfect

matchings because the generated instances have more acceptable pairs in the priority

ranking lists of both students and enterprises. In addition, the results show that HS finds a

much higher number of perfect matchings than AS.
Figure 3(b) shows the average execution time to find the perfect matchings of the

HS and AS algorithms. The average time to find the perfect matchings of AS ranges from

10-1 = 0.1 seconds (when p2 = 1.0) to 101.5 = 31.6 seconds (when p2 = 0.0, 0.1, . . ., 0.9),
while the average time to find the perfect matchings of HS is about 10-2.3 = 0.005 seconds,

P
er

ce
n

ta
g

e
o

f
p

er
fe

ct
 m

at
ch

in
g

s
P

er
ce

n
ta

g
e

o
f

p
er

fe
ct

 m
at

ch
in

g
s

A
v

er
ag

e
ex

ec
u

ti
o
n

 t
im

e
(l

o
g

1
0
 (

s)
)

A
v

er
ag

e
ex

ec
u

ti
o
n

 t
im

e
(l

o
g

1
0
 (

s)
)

Vinh University Journal of Science, Vol. 51, No. 3A/2022, pp. 22-33

 31

that is, the student finds the perfect matching faster than AS about 20 (when p2 = 0.1) to

6300 times (when p2 = 0.0, 0.1, . . ., 0.9).

With the above three experiments, we see that the HS algorithm not only

outperforms the AS algorithm in the number of perfect matchings found, but also performs

many times faster than AS when finding the perfect matchings.

Experiment 4: In this experiment, we consider the efficiency of HS algorithm

when n and m are large: n = 1000, m ∈ {30, 60, 90}, p1 = 0,9, and p2 ∈ {0.0, 0.1, . . ., 1.0}.
For each combination of the values of the parameters (n, m, p1, p2), we randomly generate

100 instances with cj = n/m and 100 instances with cj = n/m + 1.

Figure 4(a) shows that as the number of enterprises increases, it is easier for

students to find perfect matchings because the number of acceptable pairs in the generated

instances increases. In addition, students found higher perfect matchings as each enterprise

increased its likelihood of accepting an additional intern. Figure 4(b) also shows that the

average time for students to find perfect matchings is about 10-1.7 = 0.02, 10-1.5 = 0.3, and

10-1.3 = 0.05 seconds when m = 30, 60, and 90, respectively.

With the above experimental results, we see that the HS algorithm is not only

efficient in finding the perfect matchings, but also in terms of execution time for the large

HRT problem.

(a) Percentage of perfect matchings

b) Execution time

for finding perfect matchings

Figure 4: The result of Experiment 4

5. Conclusion

In this paper, we propose an approximate heuristic search algorithm to solve the

problem of assigning internship locations to students. In each iteration of the algorithm,

each student who has not been matched with an enterprise will be matched with an

enterprise that the student has the highest priority rating and has the most internships left.
If the enterprise that is matched with students exceeds the number of students who are

likely to receive an internship, the enterprise will remove a matched student whose

enterprise ranks the lowest, and the student who ranks with the most enterprise-ranked

A
v

er
ag

e
ex

ec
u

ti
o
n

 t
im

e
(l

o
g

1
0
 (

s)
)

P
er

ce
n

ta
g

e
o

f
p

er
fe

ct
 m

at
ch

in
g

s

N. Q. Ninh, D. V. Nam, H. H. Viet / An approximate search algorithm for the student-internship…

 32

listings. This not only ensures that the enterprise does not exceed the number of interns,

but also creates the most opportunities for the eliminated students to match with other

enterprises. Experimental results on randomly generated datasets show that our algorithm

is not only more efficient than AS algorithm in terms of execution time and solution

quality, but also effective for large size problems.

REFERENCES

[1] D. Gale and L. S. Shapley, “College admissions and the stability of marriage,” The

American Mathematical Monthly, vol. 9, no. 1, pp. 9-15, 1962.

[2] D. Gusfield and R.W. Irving, The Stable Marriage Problem: Structure and Algorithms,

MIT Press, 1989.

[3] R. W. Irving, D. F. Manlove, and S. Scott, “The hospitals/residents problem with ties,”

in Proceedings of the 7th Scandinavian Workshop on Algorithm Theory, Bergen,

Norway, 6/2000, pp. 259-271.

[4] R. W. Irving, D. F. Manlove, and S. Scott, “The stable marriage problem with master

preference lists,” Discrete Applied Mathematics, vol. 156, no. 15, pp. 2959-2977,

2008.

[5] R. W. Irving and D. F. Manlove, “Finding Large Stable Matchings,” Journal of

Experimental Algorithmics, vol. 14, no. 1, pp. 1-27, 2009.

[6] P. Biró, D. F. Manlove, and I. McBride, “The hospitals/residents problem with couples:

Complexity and integer programming models,” in Proceeding of SEA 2014: 13th

International Symposium on Experimental Algorithms, Copenhagen, Denmark,

7/2014, pp. 10-21.

[7] D. Munera, D. Diaz, S. Abreu, F. Rossi, V. Saraswat, and P. Codognet, “A local search

algorithm for SMTI and its extension to HRT problems,” in Proceedings of the 3rd

International Workshop on Matching Under Preferences, University of Glasgow, UK,

4/2015, pp. 66-77.

[8] D. F. Manlove, I. McBride, and J. Trimble, “almost-stable” matchings in the hospitals/

resident’s problem with couples,” Constraints Journal, vol. 22, no. 1, pp. 50-72, 2017.

[9] K. Iwama, D. Manlove, S. Miyazaki, Y. Morita, “Stable marriage with incomplete lists

and ties,” in Proceedings of ICALP 1999: The 26th International Colloquium on

Automata, Languages, and Programming, 1999, pp. 443-452.

[10] D. F. Manlove, R. W. Irving, K. Iwama, S. Miyazaki, and Y. Morita, “Hardvariants of

stable marriage,” Theoretical Computer Science, vol. 276, no. 1, pp. 261-279, 2022.

[11] Z. Király, “Linear time local approximation algorithm for maximum stable marriage,”

Algorithms, vol. 6, no. 1, pp. 471-484, 2013.

[12] A. Kwanashie, D. F. Manlove, “An integer programming approach to the

hospitals/residents problem with ties,” in Proceedings of the International Conference

on Operations Research, Erasmus University Rotterdam, 2013, pp. 263-269.

Vinh University Journal of Science, Vol. 51, No. 3A/2022, pp. 22-33

 33

[13] D. Munera, D. Diaz, S. Abreu, F. Rossi, V. Saraswat, P. Codognet, “Solving hard

stable matching problems via local search and cooperative parallelization,” in

Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence, Austin,

Texas, 2015, pp. 1212-1218.

[14] I. P. Gent and P. Prosser, “An empirical study of the stable marriage problem with

ties and incomplete lists,” in Proceedings of the 15th European Conference on

Artificial Intelligence, Lyon, France, 2002, pp. 141-145.

TÓM TẮT

MỘT THUẬT TOÁN TÌM KIẾM XẤP XỈ

CHO BÀI TOÁN PHÂN CÔNG ĐỊA ĐIỂM THỰC TẬP CHO SINH VIÊN

Nguyễn Quang Ninh (1), Đinh Văn Nam (2), Hoàng Hữu Việt (1)

 1 Viện Kỹ thuật và Công nghệ, Trường Đại học Vinh, Việt Nam
2 Khoa Sư phạm, Trường Đại học Hà Tĩnh, Việt Nam

Ngày nhận bài 07/9/2022, ngày nhận đăng 21/10/2022

Bài báo này đề xuất một thuật toán tìm kiếm xấp xỉ để giải quyết bài toán phân công địa

điểm thực tập cho sinh viên. Ý tưởng chính của thuật toán là trong mỗi bước lặp của thuật toán,

mỗi sinh viên chưa được ghép với doanh nghiệp thực tập sẽ được ghép với một doanh nghiệp mà

sinh viên xếp hạng ưu tiên cao nhất và còn nhiều chỗ thực tập nhất. Nếu doanh nghiệp được ghép

với sinh viên vượt quá số lượng sinh viên có khả năng nhận thực tập, doanh nghiệp sẽ loại bỏ một

sinh viên đã được ghép mà doanh nghiệp xếp hạng thấp nhất để đảm bảo không vượt quá số sinh

viên thực tập. Kết quả thực nghiệm trên các bộ dữ liệu được tạo ngẫu nhiên chỉ ra rằng thuật toán

của chúng tôi hiệu quả cho bài toán kích thước lớn.

Từ khóa: Cặp khối; phép ghép ổn định; phân công thực tập; thuật toán xấp xỉ.

